Электроника

Электроника дома В категории приведены описания радиоэлементов применяемых в конструировании электросхем различных радиоприборов. 
 Также представлены принципиальные схемы электронных помощников, которые сделают вашу жизнь более комфортной и уютной. Воспользовавшись материалами данной категории вы сможете собрать полезные электронные устройства для дома, автомобиля, дачи. Также хочется сказать и о том, что для кого то увелечение электроникой может стать хобби, и в этом случае наша категория предложит вам теоретический материал для него.

 Выпрямитель электрического тока или диод - механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток. Диодный мост - электронная схема, предназначенная для преобразования ("выпрямления") переменного тока в пульсирующий постоянный. Такое выпрямление называется двухполупериодным.

Конструкция диодных мостов может быть выполнена из отдельных диодов, или в виде монолитной конструкции (диодной сборки). Монолитная конструкция, как правило, предпочтительней - она дешевле и меньше по объему. Диоды в ней подобраны на заводе изготовителе и параметры максимально аналогичны друг другу, в отличие от отдельных диодов, где параметры могут отличаться друг от друга. К тому же в сборке диоды работают в одинаковом тепловом режиме, что уменьшает разброс по характеристикам между диодами во время работы. Еще одним преимуществом диодной сборки является ее простота монтажа на плате. Основным недостатком монолитной конструкции является не возможность замены одного диода, вышедшего из строя другим, в этом случае необходимо менять всю сборку, но происходит это крайне редко.
 В статье расскажу не о самих диодах и сборках, а об их основных характеристиках, то есть с каким током они могут работать, на какое напряжение. Иногда такие характеристики еще называют даташит (datasheet). Можно сказать, что это будут упрощенные даташиты для некоторых распространенных диодов и сборок.

 В этой статье расскажу о весьма банальных вещах, что не менялись уже не одно десятилетие, да они вообще не менялись. Другое дело, что с тех пор как был изучен принцип снижения напряжения в замкнутой цепи за счет сопротивления, появились и другие принципы питания нагрузки, за счет ШИМ, но тема это отдельная, хотя и заслуживающая внимания. Поэтому продолжу все-таки по порядку логического русла, когда расскажу о законе Ома, потом о его применении для различных радиоэлементов участвующих в понижении напряжения, а после уже можно упомянуть и о ШИМ.

 Наши компьютеры стали некой Меккой в нашем доме, заменив нам отчасти книги, телевизор, а кому-то и семью:) Ну да ладно не будем иронизировать, ведь даже с нашими компьютерами случаются неприятности где улыбка и шутки не уместны, это касается поломок. Одна из вероятных поломок, когда компьютер не запускается вовсе, это поломка блока питания. Не смотря на то, что блоки питания бывают на разную мощность, где-то от 300 Ватт и выше, все они работают по одному принципу. По сути это блоки питания где из переменного напряжения получаем постоянное, потом с помощью микросхемы задаем импульс, инициируем так называемую ШИМ, и с помощью силовых ключей и управляющего этого вот импульса, получаем нужное нам напряжение с нужной "пилой" напряжением на выходе. Это весьма кратко и примитивно, но вполне отражает суть процессов происходящих в БП компьютера. И в случае если все-таки что-то ломается, то надо идти по этой вот цепочки и разбираться, какой же из управляющих элементов у нас того этого, накрылся. В этой статье как раз и поговорим о ремонте блока питания компьютера, если он сломался.

 Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.

 Одна из наиболее частых проблем связанных с выходом из строя p-n переходов является нарушение их структуры, выгорание самого перехода за счет выделяемого тепла. По-народному можно сказать, что транзистор, диод, полупроводниковый элемент сгорает. Визуально именно локальным прожогом выглядит место, где происходит тепловой пробой на корпусе элемента. Часто такие пробои "выступают" на поверхность корпуса и представляют собой точку - прожог на композитном материале.
 В статье как раз поверхностно будет затронута тема появления таких тепловых пробоев и приведены примеры, которые наверняка укажут на нерабочие радиоэлементы, это уже будет основной задаче статьи, то есть рассказать читателю о диагностике и выявлении неисправностей связанных с полупроводниковыми приборами.

 Наши бытовые помощники не только помогают нам экономить время, но иногда просто не имеют других альтернатив, кроме как их применение в каждодневном быту. Ведь никакой веник не высосет пыль из все щелей и потайных уголков, как это может сделать пылесос...
 Однако любой бытовой прибор, посудомоечная машинка, стиральная машинка, и в том числе и у пылесос, может сломаться. И что в этом случае делать!? Ответы очевидны. Можно либо купить новую аналогичную вещь, либо починить то, что уже есть. Второй вариант более оправдан экономически, хотя потребует от вас некоторых умений и знаний. Именно как раз о таких знаниях, о починке пылесоса, я и расскажу в этой статье.

 SMD компоненты стали обыденными, привычными и все в таком роде... В общем они уже везде и всюду. При этом даже радиолюбители перешли на подобный формат радиодеталей, которые применяются для реализации электрических схем. А это значит, что неплохо было бы знать, какие у SMD функциональные выводы и за что они отвечают. Речь в этой небольшой статье  пойдет о SMD транзисторах биполярных, то есть нас будут интересовать какие ножки у транзисторов являются базой, эмиттером и коллектором.
 Информация справочная, для тех, кто забыли или не знал какие же ножки за что отвечают.

 Настало время покупать новый мультиметр, ну такой универсальный прибор. В общем кто в курсе, тот знает. Та вот, выбор пал на Fluke 106. Прежде всего подкупило то, что на приборе очень понятная шкала, врубил Омы и он сам подстраивается под предел измерения. Врубил постоянный ток и меряет хоть 1 вольт, хоть 500. Удобно, - не щелкать ручкой и не особо задумываться как бы и когда переключиться. Прибор тем более в магазине продавался со скидкой, так что решено, - беру!
 Единственное, что меня несколько расстраивало, так это то, что в приборе нет подсветки. Почему-то то, что в приборе нет измерения частоты, относительно более высокой серии, расстраивало не так как отсутствие подсветки.

 Индуктивность катушки зависит от ее размеров, количества витков и способа намотки. Чем больше эти параметры, тем выше индуктивность. Если катушка наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками. Когда требуется изготовить катушку по заданным размерам и нет провода нужного диаметра, то при использовании более толстого провода надо сделать больше витков, а тонкого - уменьшить их количество, чтобы получить необходимую индуктивность. Все приведенные выше рекомендации справедливы при намотке катушек без ферритовых сердечников.

Подкатегории

 Arduino в свое время организовали два человека. Американец Дэвид и Итальянец Массимо. Видимо они были каким-то программистами - электронщиками. В итоге получилась такая игрушка в виде микроконтроллера, который можно программировать, а значит с помощью этих самых программ выполнять какие-то действия и задачи. По сути это небольшой компьютер без монитора, без порта для принтера, без видеокарты, то есть с минимальными возможностями, но все же значительным потенциалом! Здесь все зависит от того, как применить этот самый Arduino.

 Микроконтроллеров - сборок Arduino довольно много. То есть Arduino может быть в зависимости от исполнения сборки представлен в различном виде. Если провести аналогию с машинами, то Arduino это марка, а вот возможные сборки Arduino (UNO, Leonardo, Nano, One...) это модели этой марки. Именно поэтому не стоит мешать все в одну кучу, не смотря на то, что они очень между собой похожи. Основные их различия заключаются в объеме памяти Arduino, в размерах, в выводах, в частных особенностях...
 Так что выберите для себя какой-то один Arduino и начните работать с ним. Для того чтобы вам было проще определиться, мы вам посоветуем взять Arduino UNO, как наиболее распространенный.

(Китайский Arduino на Али - некая аналогия "подделка", но при этом дешевле раз в 6 оригинала. Функционально один в один. Стоит около 4,5 долларов)

Когда освоите его, то дальше можно будет продолжить работать и с другими подобными сборками. А сейчас о проектах и подключении Arduino в нашем разделе.

ESP32 — это многофункциональный, недорогой и энергоэффективный микроконтроллер на базе системы-на-кристалле (SoC), разработанный компанией Espressif Systems. Он широко используется в проектах IoT (Интернета вещей) благодаря встроенным модулям Wi-Fi и Bluetooth/BLE, двухъядерному процессору и поддержке множества периферийных устройств. Ниже приведено подробное описание его характеристик, применения и экосистемы:

Основные особенности
Двухъядерный процессор: Два 32-битных ядра Xtensa LX6 (до 240 МГц), поддерживающие многозадачность (например, работу под управлением FreeRTOS).

Беспроводные интерфейсы: Wi-Fi (802.11 b/g/n): Режимы станции, точки доступа (AP) и их комбинация.

Bluetooth (Classic и BLE 4.2+): Идеален для IoT-устройств с коротким радиусом действия.

Память: 520 КБ SRAM, 448 КБ ROM (зависит от модуля).

Поддержка внешней flash/SRAM через SPI.

Периферия: GPIO (до 34 выводов), 12-битный АЦП, ЦАП, сенсоры касания, ШИМ, I2C, SPI, UART, CAN и др.

Встроенный датчик Холла, температурный сенсор (в некоторых версиях), емкостные сенсоры.

Низкое энергопотребление: Режимы сна (например, глубокий сон с потреблением ~5 мкА) для работы от батарей.

Ультранизкопотребляющий сопроцессор (ULP) для простых задач в режиме сна.

Безопасность: Защищенная загрузка, шифрование флеш-памяти, аппаратное ускорение криптографии (AES, SHA-2, RSA).

Варианты чипов: ESP32-S2 (одноядерный, USB OTG), ESP32-C3 (ядро RISC-V), ESP32-S3 (двухъядерный + векторные инструкции).

Популярные платы на базе ESP32: ESP32-DevKitC: Официальная плата от Espressif с минимальной периферией.

NodeMCU-32S: Включает USB-to-UART и поддержку Lua.

TTGO T-Display: С интегрированным OLED-экраном.

Adafruit Feather ESP32: Компактный дизайн с поддержкой батарей.

M5Stack: Модульная система с дисплеями и датчиками.

Языки/Фреймворки: Arduino IDE: Упрощает разработку с библиотеками для Wi-Fi, BLE и датчиков.

ESP-IDF (IoT Development Framework): Официальный SDK для продвинутой разработки (C/C++).

MicroPython: Среда для скриптов на Python.

PlatformIO: Кроссплатформенная IDE с поддержкой ESP32.

Библиотеки: Готовые решения для AWS IoT, MQTT, HTTP, OTA-обновлений и драйверов периферии.

Отладка: Поддержка JTAG (через ESP-Prog или сторонние инструменты).

IoT-устройства: Умные датчики (температуры, движения), носимые устройства, умные розетки.

Беспроводная связь: BLE-маяки, Wi-Fi-сети с топологией mesh, шлюзы.

Промышленная автоматизация: Удаленный мониторинг, ПЛК (программируемые логические контроллеры), связь через CAN.

Робототехника: Управление моторами, обработка данных с датчиков, параллельные задачи на двух ядрах.

Прототипирование: Быстрое создание прототипов для проверки концепций.

Преимущества перед ESP8266
Двухъядерный процессор для многозадачности.

Больше GPIO и периферии (сенсоры касания, CAN).

Встроенный Bluetooth/BLE.

Улучшенные функции безопасности.

Меньшее энергопотребление в режиме сна.

Сложность: Работа с RTOS или беспроводными стеками может быть сложной для новичков.

Оптимизация энергопотребления: Требует тщательной настройки для работы от батарей.

Различия в железе: Распиновка и функции отличаются у разных модулей (сверяйтесь с даташитами!).

Подготовка железа:

Подключите плату через USB и установите драйверы (CP210x или CH340).

* Если в Диспетчере оборудования на компьютере у вас не определяется устройство, то ставим драйвера!

Программная настройка:

Установите Arduino IDE или VS Code с PlatformIO. Ставим плату esp 32 и выбираем Wrover Module

Используйте примеры: WiFiScan, BLE_Server, DeepSleep.

 Дабы не изъясняться "сухим" языком, что же такое микроконтроллер, скажу сразу.... Как только я начал знакомиться с микроконтроллерами, то есть делать на них хоть какие-то мало-мальские поделки, то сразу понял, что аналоговая техника по сравнению с этими букашками жутко проигрывает. По крайней мере это касается всевозможных таймеров, с объемными конденсаторами, мультивибраторов и иже с ними!  В этом отношении микроконтроллеры просто поразительны "гибкие" радиодетали. Они занимают минимум места, они не дорогие, они потребляют мощность порой на уровне пары светодиодов!
 Теперь если без эмоций, то микроконтроллер это по сути маленький компьютер, разве что монитора у него нет. Зато есть вычислительное ядром (микропроцессор), интерфейсы для подключения всевозможных устройств для ввода и вывода информации, для управления устройствами и измерения различных параметров, есть память, таймер...
 Осталось лишь только правильно загрузить этот "маленький компьютер", чтобы он работал на благо нас же и на наши задачи! Именно этому и будет посвящена эта категория, именно статьи на эту тему я и буду писать здесь. Надеюсь к меня найдется и время и желание и возможности пополнять раздел новыми статьями постоянно, на свое благо и других, кто возможно заинтересуется этими наработками!